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DC electric field effects on Ehrenfest-like relations at the glass transition
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Abstract

There have been numerous studies on the effects of dc and alternating electric fields on phase transitions in small-molecule mixtures and high-
molecular weight polymers. Furthermore, textbook examples discuss modifications in the melting temperature of pure materials that are subjected
to uniform dc fields. This thermodynamic analysis extends some of these predictions to second-order phase transitions. Upon invoking both vol-
ume and entropy continuity via the integral approach to phase equilibrium at second-order transitions, electric field effects on the glass transition
are developed that parallel the Ehrenfest equations for the pressure dependence of Tg. Both Tg-field equations predict small changes in the glass
transition temperature that scale as the square of the electric field strength. If one equates the dependence of Tg on the magnitude of the electric
field via (i) volume continuity and (ii) entropy continuity, it is possible to obtain the electric-field analog of the PrigogineeDefay equality, in which
thermophysical properties and discontinuous observables at the zero-field and field-dependent second-order phase transition temperatures are re-
lated. When the temperature and pressure dependencies of the relative electric permittivity (i.e., dielectric constant) are neglected in the absence of
external fields, one recovers the classic PrigogineeDefay equality (i.e., the lower limit of the PrigogineeDefay ratio) that was developed from
a consideration of volume and entropy continuity for the pressure dependence of Tg, by invoking the differential approach to phase equilibrium.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Electric field effects on low-molecular weight
molecules and their mixtures

Phase diagrams [1,2], phase transitions [3e14], and solid-
state morphologies of low-molecular-weight liquid crystals
[3e8], homopolymers [15e20], copolymers [21e28], and
polymer blends [16,21,25,29e33] have been addressed in
the presence of electric fields. Folkins et al. [1] presented a de-
tailed theoretical analysis to predict the phase diagram of be-
taine calcium chloride dihydrate in externally applied electric
fields. The strategy involved formulating an expression for the
electric-field-dependent free energy via coupling ionic dis-
placements to crystallographic polarization and, subsequently,
identifying the interaction between polarization and the
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electric field. Equilibrium phase diagrams were calculated by
minimizing the free energy with respect to all components of
the crystal’s polarization vector. Kroupa [10] measured dielec-
tric constants and optical birefringence in betaine phosphates
and arsenates. Low-temperature phase transitions in the vicin-
ity of 80e90 K for betaine phosphate and 135e140 K for deu-
terated betaine phosphate split when electric fields on the order
of 10e20 kV/cm induce the formation of a ferroelectric phase
[10]. Ye et al. [11] measured a first-order phase transition in
chromium chloride boracite at 264 K induced by mechanical
stress. At slightly lower temperature, an electric-field-induced
phase transition is observed at 250 K in chromium chloride bor-
acite when the field strength exceeds 85 kV/cm [11]. Pershin
and Konoplev [2] studied orientational order due to electric
fields from a theoretical viewpoint. Generic field-temperature
phase diagrams were constructed for plastics and liquid crystal-
line materials. Kuczynski et al. [5] studied electric field effects
on the smectic-C to smectic-A phase transition at 30.5 �C in
4-octyloxy-4-[(2-methyl butyloxy) carbonyl] phenylbenzoate.
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Nomenclature

Cp,E¼0 molar heat capacity in the absence of an electric
field, see Eq. (15)

D electric displacement vector, charge/cm2

dP differential polarization vector, given by a sum
over all point charges

P
iqi dri

dr differential displacement vector experienced by
charge q in an electric field

E electric field vector, volts/cm
F force experience by charge q in an electric

field
h molar enthalpy of a pure material
N total moles or total number of components in the

mixture
Ni moles of component i in a mixture
P dielectric polarization vector, defined by Eq. (1),

charge-cm
Pi (with overbar) partial molar dielectric polarization of

species i, defined by Eq. (8)
p pressure
q charge, coulombs
r displacement vector experienced by charge q in

an electric field
S extensive entropy
Si partial molar entropy of species i (see Eq. (11))
s molar entropy of a pure material
s[Tg(E¼ 0),p; E¼ 0] molar entropy of a pure material in

the absence of a dc electric field, evaluated at its
zero-field glass transition temperature

s[Tg(E ),p,E] molar entropy of a pure material at its glass
transition in an electric field

s[Tg(E ),p; E¼ 0] molar entropy of a pure material in the
absence of an electric field, evaluated at a tem-
perature that corresponds to its glass transition
temperature in the presence of a dc electric field

T temperature
Tg(E¼ 0) glass transition temperature under zero-field

conditions
Tg(E ) glass transition temperature in the presence of

a dc electric field
Tmelt(E¼ 0) melting temperature under zero-field

conditions
Tmelt(E ) melting temperature in the presence of a dc

electric field
V extensive volume
Vi partial molar volume of species i (see Eq. (12))
v molar volume of a pure material
v[Tg(E¼ 0),p; E¼ 0] molar volume of a pure material in

the absence of a dc electric field, evaluated at its
zero-field glass transition temperature

v[Tg(E ),p,E] molar volume of a pure material at its glass
transition in an electric field

v[Tg(E ),p; E¼ 0] molar volume of a pure material in the
absence of an electric field, evaluated at
When a 50-V dc bias is applied across a planar-oriented sample
having a thickness of 30 mm, the liquid crystalline phase transi-
tion is broadened severely, as detected via light modulation
measurements [5]. However, one of the authors’ main conclu-
sions is that the critical temperature of the smectic-C to smec-
tic-A phase transition is independent of electric field strength
[5]. Coles and Gleeson [8] observed electric-field-induced
phase transitions in mixtures of cyano-biphenyls with a variety
of chiral esters. These blends exhibit mesophases (i.e., blue
phases) that occur over a 2e3 �C temperature range between
the chiral nematic liquid crystalline phase and the isotropic mol-
ten state [8]. In the presence of ac electric fields, these blue
phases transform to (i) chiral nematic phases, and (ii) homeo-
tropic nematic phases [8]. Characteristic time constants for these
field-induced phase transitions are on the order of 100e200 ms
[8]. Kitzerow et al. [12] studied electric-field-induced phase
transitions in liquid crystalline mixtures containing 30 wt% of
the chiral compound 1-methyl-heptyl-oxybenzoyl-4-hexyloxy-
benzoate. In the absence of external fields, three distinct blue
phases are observed sequentially over a 1.1 �C temperature
range as the mixture is heated from the cholesteric state at
43.5 �C to the isotropic molten state at 44.6 �C [12]. The bound-
ary between the cholesteric phase and the first blue mesophase
exhibits positive temperature dependence on the electric field/
temperature projection of the phase diagram for rms field
strengths between 40 V and 80 V applied across a 12 mm-thick
sample [12]. Along other lines, electric fields can affect the
phase behaviour of lipids in biological membranes. Antonov

a temperature that corresponds to its glass tran-
sition temperature in the presence of a dc elec-
tric field

U extensive internal energy
xi mole fraction of component i in a mixture

Greek symbols:

aE¼0 thermal expansion coefficient under zero-field
conditions, see Eq. (18)

b isothermal compressibility
D difference between thermodynamic properties in

liquid state and glassy state
Dhmelting,E¼0 molar enthalpy change for melting of pure

materials under zero-field conditions
30 permittivity of free space, 8.854� 10�12 C2/

N m2

3 dielectric permeability, charge/(volt-cm), or same
dimensions as 30

k dielectric susceptibility, V(3�30)/4p, charge-
cm2/volt

k�i partial molar dielectric susceptibility of species i
(see Eq. (10))

l PrigogineeDefay ratio, defined by Eq. (21)
mi chemical potential of component i in a mixture
J thermodynamic state function defined by Eqs.

(4e6), energy
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et al. [14] demonstrated that a 150 mV bias increases the phase
transition temperature of phosphatidic acids by 8e12 �C.

1.2. Electric field effects on polymers and their mixtures

Amundson, Helfand and coworkers used small-angle X-ray
scattering [24,26] and optical birefringence measurements via
laser-beam technology [28] to demonstrate that a uniform ex-
ternal electric field can induce macroscopic alignment of block
copolymer microstructures. When polystyrene-poly(methyl-
methacrylate) diblock copolymers are cooled below the molec-
ular-weight-dependent orderedisorder transition at 251 �C
(MW z 37,000 Da), stationary plane wave composition pat-
terns develop that mimic lamellae [28]. In an effort to
minimize the anisotropic electrostatic contribution to the free
energy associated with plane wave patterns, these lamellar sur-
faces orient predominantly orthogonal to the electrode surfaces
[28]. Binary mixtures of polystyrene with poly(ethylene oxide)
[29e31], and ternary blends of polystyrene, poly(ethylene ox-
ide), and a polystyrene-poly(ethylene oxide) diblock copoly-
mer [21,25] exhibit phase orientation of the minor component
(PEO) in the presence of either ac [29] or dc [21,25,30,31] elec-
tric fields. The PEO morphology is best described as ‘‘pearl
chains’’ oriented in the direction of the field due to the dielectric
constant mismatch between dissimilar phases. Column-like
structures form when the applied field is larger than 2 kV/cm.
In the ternary polymer-copolymer blends mentioned above,
the PS-PEO diblock copolymer (i) reduces interfacial surface
tension between immiscible polystyrene and poly(ethylene ox-
ide) phases, and (ii) allows the formation and stabilization of an
elongated phase as viewed in the optical microscope. Hsu and
Lu [19] investigated isothermal crystallization of undiluted
poly(vinylidene fluoride) upon cooling from the molten state
in the presence of relatively weak electric fields. Whereas the
helical a phase is favored under zero-field conditions, annealing
temperatures in the vicinity of 100e170 �C and moderate field
strengths on the order of 70 kV/cm induce a solid-solid phase
transformation from the a-form to the g-form [18,19]. The latter
polymorph [i.e., g-form of poly(vinylidene fluoride)] is charac-
terized by a large degree of trans sequences as detected by in-
frared spectroscopy. Along similar lines, Koga and coworkers
[23] observed electric-field-induced phase transformations in
copolymers of vinylidene fluoride with trifluoroethylene. At
ambient pressure, copolymers with a high content of vinylidene
fluoride (i.e., 82e90 mol%) crystallize as a mixture of three dif-
ferent modifications, identified as a, b, and g, which are isomor-
phic to the crystallographic modifications of poly(vinylidene
fluoride) homopolymers. In the presence of strong ac electric
fields on the order of 1600 kV/cm cycling at 1 kHz, the mixed-
phase copolymer crystals transform completely into the ferro-
electric b polymorph [23] as detected by X-ray diffraction,
differential scanning calorimetry, and infrared spectroscopy.
Tashiro and coworkers [22] studied the ferroelectric-(trans)/
paraelectric-( gauche) phase transition at 125 �C in copolymers
of vinylidene fluoride with trifluoroethylene subjected to strong
ac electric fields. Relative to the previously cited investigation
by Koga [23], Tashiro et al. [22] focused on low-frequency
response of the polarization inversion current over a wide tem-
perature range in copolymers that contained a lower content of
vinylidene fluoride (i.e., 75 mol% VDF). Electric dipole re-
sponse to the polarization inversion experiment was interpretted
in terms of temperature-dependent motional models for transe
gauche conformational rearrangements of the copolymer seg-
ments [22]. Reynolds et al. [27] also studied microstructural
changes that occur in copolymers of vinylidene fluoride
(75 mol% VDF) with trifluoroethylene using variable-tempera-
ture infrared spectroscopy. Films were subjected to uniaxial ten-
sile deformation with a draw ratio of 1.6, and strong electric
fields on the order of 2.2 MV/cm. Infrared data reveal that the
crystallites are sensitive to mechanical stress and align with the
stretching direction [27]. Chains within the crystallites rotate in
response to the electric field [27]. Strong temperature-depen-
dent hysteresis of infrared absorption intensity is observed
below the Curie temperature when the electric field is cycled
between either �1 MV/cm or �2.2 MV/cm [27]. In some re-
spects, the application of an electric field disrupts the orienta-
tion that was generated by mechanical deformation [27].
Yitzchaik et al. [16] employed electric fields on the order of
10e50 kV/cm to induce asymmetric ordering of dye aggregates
in polymeric matrices containing side-chain nematic liquid
crystalline moieties. Second harmonic generation coefficients
reveal that substituted stilbene derivatives develop orientation
both parallel and perpendicular to the dc electric field vectors
[16]. Previous investigations that closely resemble the discus-
sion in this contribution were published by Reich and Gordon
[34]. These authors applied dc electric fields across thin films
of polystyrene (MWPS¼ 3� 104) and poly(vinyl methyl ether),
MWPVME¼ 1.4� 104, and detected cloud points (i.e., on the bi-
nodal curve) via laser light scattering techniques [34]. Multiple
experiments revealed that electric-field-induced phase separa-
tion in this classic blend, which exhibits LCST behaviour, oc-
curs at 82 �C when the field strength is 272 kV/cm [34]. This
observation represents a decrease of 54 �C in the cloud point
at the highest field reported [34], relative to a cloud point of
136 �C in the absence of electric fields.

1.3. Motivation for the analysis of electric field effects on
phase transitions

As indicated in the previous two sections, there have been
numerous investigations of electric field effects on phase tran-
sitions in a variety of materials, but theoretical and experimen-
tal analyses of the glass transition have not occurred. This is
a difficult problem, experimentally, because very strong electric
fields are required that might exceed the threshold for dielectric
breakdown. The energy required to orient electric dipoles (i.e.,
on the order of 30E2, with dimensions of energy/volume) must
compete with the thermal energy associated with stochastic
Brownian motion (i.e., zNRT/V) that tends to disrupt dipolar
alignment when dielectrics are poled in the molten state. Fur-
thermore, heating an electret in the absence of the field to mea-
sure Tg might cause thermally induced misalignment of electric
dipoles below the phase transition such that artifacts obscure the
true effect of the applied field. Suffice it to say that experimental
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data are rare and theoretical predictions have not appeared in the
literature. First-order phase transition temperatures are much
more sensitive to electric fields than second-order phase transi-
tions. This manuscript focuses on theoretical predictions of Tg

modification due to dc electric fields.

2. Theoretical considerations

2.1. Electrostatic preliminaries

The macroscopic formalism to predict phase boundaries,
critical solution temperatures, and phase transition tempera-
tures for dielectrics in the presence of static uniform electric
fields begins with the energy representation of the first law
of thermodynamics [35,36]. Dielectric materials alter the mag-
nitude of the effective field everywhere within the solid, and
the fact that electric fields do not vanish within dielectrics, be-
cause they do not support a steady flow of current, has a signif-
icant effect on the material’s thermodynamic properties [37].
A classical electromagnetic description of internal field distor-
tions due to the accumulation of charge at curved interfacial
boundaries that might appear when phase separation occurs
is beyond the scope of this contribution. It should not be sur-
prising that rigorous thermodynamic analysis of electric fields
is not as simple as the corresponding study of gravitational and
centrifugal fields. By invoking a simplification of Faraday’s
law for steady state electrostatic cases, which states that the
curl of the electric field should vanish [38], the electric field
vector E is written as the gradient of a scalar potential. The
force qE experienced by an electric dipole due to the electric
field E contributes a work term to the internal energy of the
mixture. The appropriate work term is given by the scalar
(dot) product of the electric field vector E with the differential
change in the total dipole polarization vector dP, via the clas-
sical mechanics analog of F$dr¼ E$q dr, where q dr re-
presents a differential change in the dipole moment as
individual charge q experiences displacement dr in the field.
The dipole polarization vector P of dielectric materials, with
dimensions of charge-cm, is defined by the ensemble average
of microscopic dipole moments [37] with respect to a labora-
tory-fixed coordinate system;

P¼
*X

i

qiri

+
ð1Þ

If dielectric materials are polarized in the presence of an
electric field, then P is nonzero. For isotropic dielectrics that
respond linearly to externally applied fields, the total dipole
polarization vector P and the electric displacement vector D
are parallel to the electric field vector everywhere within the
solid medium. These relations represent the first-order term
for Taylor series expansions of P and D in terms of powers
of E, and subsequent truncation due to the fact that internal
molecular fields are much stronger than the external field.
The scalar proportionality constant that relates electric dis-
placement D to the electric field E is called the dielectric per-
meability, or the permittivity 3, with dimensions of charge per
volt-cm (i.e., D¼ 3E ). The scalar proportionality constant that
relates the total dipole polarization P to the electric field E is
called the polarization coefficient or the dielectric susceptibil-
ity k, defined by [38];

k¼ V

4p
f3� 30g ð2Þ

with dimensions of charge-cm2 per volt (i.e., P¼ kE ). k is
positive for all materials with volume V, and 30 is the permit-
tivity of free space (i.e., in vacuum). Eq. (2) is obtained from
the definition of electric displacement D in polarized media, in
terms of the electric field E and the polarization density P/V
(i.e., D¼ 30Eþ 4pP/V) [38]. The dielectric constant of the
medium, or the relative electric permittivity, is defined as the
ratio of 3 to 30. The dielectric susceptibility k can also be de-
scribed as the first derivative of the total dipole polarization
with respect to the external electric field in the zero-field limit,
where scalars are employed to characterize the total dipole po-
larization and the external field.

2.2. Classical thermodynamics in the presence of
external fields

If one adds the work term, F$dr¼ E$h
P

iqi drii, experi-
enced by electric dipoles in the presence of a uniform field
E to the classic pV-work [36,37], then the differential form
of the first law of thermodynamics for N-component mixtures
in the presence of an electric field;

dU ¼ T dS� p dV þ
XN

i¼1

mi dNiþE,dP ð3Þ

reveals that the extensive internal energy U(S, V, all Ni, P) is
a function of entropy S, volume V, mole numbers Ni and the
total polarization P. Work must be performed on the system
(i.e., positive contribution to dU ) in the presence of a uniform
field to change the polarization vector by dP due to differential
displacement dri of charge qi. This simple fact is primarily re-
sponsible for electric-field-induced phase separation in mix-
tures that are homogeneous under zero-field conditions. All
independent natural variables of the internal energy are exten-
sive. A multivariable Legendre transformation from the inter-
nal energy U to the energetic state function J;

JðT;p;all Ni;EÞ ¼ Uþ pV � TS�E,P ð4Þ

generates the following differential expression for J in which
temperature T, pressure p, mole numbers Ni, and electric field
E now represent the independent natural variables:

dJ¼�S dTþV dpþ
XN

i¼1

mi dNi�P,dE ð5Þ

There are Nþ 1 degrees of freedom for homogeneous mix-
tures of N components in the absence of external fields, and
one additional intensive variable, like E, is required to charac-
terize each field. Since T, p, and E are intensive natural vari-
ables for the thermodynamic potential J, Euler’s theorem
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for thermodynamic functions that are homogeneous to the
first-degree with respect to the extensive independent variables
yields the following expression for J;

J¼
XN

i¼1

Nimi ð6Þ

proving that the chemical potential of species i, mi, is a partial
molar property of J, which should be interpreted as the Gibbs
free energy in the presence of uniform electric fields [43]. Several
Maxwell relations based on Eq. (5) are useful to construct the to-
tal differential of the chemical potential of species i, given by;

miðT;p;E; x1; x2;.; xN�1Þ

dmi ¼�Si dT þVi dp�Pi dEþ
PN�1

j¼1

n
vmi

vxj

o
T;p;E;allxk½ksj;N�

dxj

ð7Þ
�

where xj is the mole fraction of species j in the mixture,
and the partial molar polarization of species i is defined
by;

�
�

vmi

vE

�
T;p;composition

¼
�

vP

vNi

�
T;p;E;all Nj½jsi�

¼ Pi ð8Þ

The overall objective, here, is to evaluate the electric-field
dependence of (i) partial molar entropies and (ii) partial molar
volumes that can be used to quantify the requirements for sec-
ond-order phase equilibrium. The total polarization P of an
isotropic mixture that does not exhibit ferroelectric behaviour
can be written as;

P¼ kmixtureE ð9Þ

�
�

vVi

vE

�
T;p;composition

¼
"

v

vp

�
vP

vNi

�
T;p;E;allNj½jsi�

#
T;E;composition

¼ E

"
v

vp

ViðT;p;E;compositionÞ ¼ ViðT;p;compos
and the field dependence of the mixture’s dielectric suscepti-
bility kmixture is typically expanded in a Taylor series about
its zero-field value. Except when electric saturation occurs in
strong external fields, all terms in the expansion for kmixture be-
yond the zeroth-order contribution are typically truncated.
Consequently, the leading field-dependent terms in the expres-
sions for partial molar entropy and volume scale as E2. The
quantities of interest for electric field effects on Tg are summa-
rized below in terms of the partial molar dielectric susceptibil-
ity of the mixture;

ki ¼
�

vkmixture

vNi

�
T;p;E;all Nj½jsi�

ð10Þ

Partial molar entropy (i.e., Eq. (11));
�
vSi

vE

�
T;p;composition

¼
"

v

vT

�
vP

vNi

�
T;p;E;allNj½jsi�

#
p;E;composition

¼ E

"
v

vT

�
vkmixture

vNi

�
T;p;E;allNj½jsi�

#
p;E;composition

¼ E

�
vki

vT

�
p;E;composition

SiðT;p;E;compositionÞ ¼ SiðT;p;composition; E¼ 0Þ þ 1

2
E2

�
vki

vT

�
p;E;composition

þ/

ð11Þ
Temperature dependence of the partial molar dielectric sus-
ceptibility strongly influences electric field effects on the par-
tial molar entropy of species i.

Partial molar volume (i.e., Eq. (12));

Pressure dependence of the partial molar dielectric suscep-
tibility strongly influences electric field effects on the partial
molar volume of species i.

3. Analysis and discussion

3.1. First-order transition temperatures via phase
equilibrium in pure materials

For pure materials, electric field dependence of first-order
phase transitions has been discussed elsewhere [35] by invoking
the integral form of the chemical requirement for two-phase

vkmixture

vNi

�
T;p;E;allNj½jsi�

#
T;E;composition

¼ E

�
vki

vp

�
T;E;composition

ition; E¼ 0Þ � 1

2
E2

�
vki

vp

�
T;E;composition

þ/

ð12Þ
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equilibrium between phases a and b, where the crystalline solid
is phase a, the liquid is phase b, and v represents the field-
dependent molar volume which is discontinuous at Tmelt;

TmeltðEÞ
TmeltðE¼ 0Þz1� E2

8p

fvð3� 30Þgliquid�fvð3� 30Þgcrystal

Dhmelting;E¼0

ð13Þ

The permittivity of the medium is 3 (i.e., scalar ratio of
electric displacement to electric field for isotropic dielectrics),
and v(3�30)/4p is the molar dielectric susceptibility of pure
materials. Eq. (13) is the electric-field analog of the classic
Clapeyron equation that describes the pressure dependence
of melting transitions. Electric field effects on first-order phase
transition temperatures scale as E2 in pure materials and mix-
tures. Reich and Gordon [34] have demonstrated this phenom-
enon experimentally for the lower critical solution temperature
(i.e., LCST) in binary mixtures of polystyrene and poly(vinyl-
methylether). The denominator of Eq. (13) is positive if phase
b is thermodynamically favoured at higher temperature, be-
cause it represents the zero-field molar enthalpy change for
endothermic phase transitions. Hence, if first-order melting
transitions in pure materials shift to higher temperature in
the presence of stronger electric fields due to dipolar ordering,
then the molar dielectric susceptibility of the liquid must be
smaller than its counterpart in the crystalline solid, even
though most materials exhibit a discontinuous increment in
molar volume at Tmelt, because the addition of thermal energy
to induce melting invariably disrupts the alignment of these
electric dipoles. It must be emphasized that severely restricted
mobility in the crystalline state hinders the development of po-
larization in the presence of dc electric fields below Tmelt, so
one might conclude that the dielectric susceptibility should
be larger in a state of greater mobility. However, electrets
are prepared by heating materials into a state of significant
mobility, such that dipoles can respond to strong electric
fields. Then, the total polarization that develops is frozen-in
via cooling below the melting temperature. Next, the crystal-
line solid is heated in a calorimeter to detect the effect of fro-
zen-in dipolar alignment, prepared in the presence of strong
electric fields above Tmelt, on the first-order phase transition
temperature Tmelt(E ), even though the calorimetric experi-
ments can be performed under zero-field conditions.

3.2. Second-order phase transitions in pure materials

External electric or magnetic fields induce order in molten
amorphous materials as electric or magnetic dipoles align in
response to the field. Upon forming electrets by lowering the
temperature below the glass transition and freezing-in this di-
polar alignment, it seems reasonable that higher temperatures
should be required to disrupt this frozen-in alignment and in-
duce large-scale translational motion of the chain backbone, as
well as reptation, above Tg. Since enthalpy is continuous at
second-order phase transitions for both pure materials and
mixtures, the methodology required to analyze first-order
phase transitions must be modified for second-order transitions
to include discontinuous observables that can be measured or
predicted. It is not superficially obvious that l’Hopital’s rule
can be applied to Eq. (13), in quest of the electric field depen-
dence of Tg because, even though volume and enthalpy are
continuous at second-order phase transitions, continuity of
the dielectric permeability of the liquid and glass at Tg might
not be a valid assumption (see the discussion below). Hence,
the analyses in this section parallel the Ehrenfest approach
by invoking the integral representation of phase equilibrium
via volume and entropy continuity at Tg in the presence of ex-
ternal fields. It should be emphasized that Tg is a kinetic tran-
sition via actual experimental measurements, not a true
equilibrium second-order phase transition. In light of this
fact, one expects that electric field effects on both the kinetic
and equilibrium glass transition temperatures should be
similar.

3.3. Entropy continuity

The analog of Eq. (13) for second-order phase transitions
can be obtained by invoking entropy continuity (i) at tempera-
ture Tg(E ) in the presence of a uniform electric field, and (ii) at
Tg(E¼ 0) under zero-field conditions. Eq. (11) for the partial
molar entropy of species i can be written for pure-component
molar entropy s, and the integral approach to phase equilibrium
between the glassy state (i.e., phase a) and the liquid state (i.e.,
phase b) yields;

where the partial molar dielectric susceptibility reduces to the
molar dielectric susceptibility of the appropriate phase, v repre-
sents molar volume, and Tg in the previous equation corre-
sponds to the second-order phase transition temperature in the
presence of the field [i.e., Tg(E )]. Zero-field entropies of the
glass and liquid are equivalent at Tg(E¼ 0), but not at Tg(E ),
because the phase transition is affected by the field. Hence, it
is necessary to analyze the temperature dependence of zero-
field entropy from Tg(E¼ 0), where s[Tg(E¼ 0),p; E¼ 0] is
�
sðTgðEÞ;p;EÞ

�
a
¼
�

sðTgðEÞ;p;EÞ
�

b

s
�
TgðEÞ;p;E

�
¼ s
�
TgðEÞ;p; E¼ 0

�
þ E2

8p

�
v½vð3� 30Þ�

vT

�
p;E

þ/

�
sðTgðEÞ;p; E¼ 0Þ

�
a
þE2

8p

�
v½vð3� 30Þ�a

vT

�
p;E

z
�

sðTgðEÞ;p; E¼ 0Þ
�

b
þE2

8p

�
v½vð3� 30Þ�b

vT

�
p;E

ð14Þ
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the same in both phases, to Tg(E ) where s[Tg(E ),p,E] is the
same in both phases, but s[Tg(E ),p; E¼ 0] differs between
phases a and b. Temperature dependence of zero-field molar
entropy at constant pressure is described by Cp,E¼0/T, where
zero-field molar heat capacities (i.e., Cp,E¼0) are either (i) tem-
perature-averaged, or (ii) very weak functions of temperature
such that they can be treated as constants. The electric-field
analog of the Ehrenfest equation for second-order phase transi-
tions, based on entropy continuity, is;

There are no known exceptions to the fact that the denom-
inator of Eq. (15) is greater than zero. Hence, if electric-field
ordering due to dipolar alignment increases the glass transition
temperature, then the temperature dependence of the molar
dielectric susceptibility must be smaller in the liquid state rel-
ative to the glassy state, even though field-dependent thermal
expansion coefficients, which are directly related to (vv/
vT )p,E, exhibit a discontinuous increment upon heating
through the second-order phase transition. Hindsight reveals
that application of l’Hopital’s rule to the effect of electric
fields on first-order phase transitions (i.e., Tmelt), via differen-
tiation of numerator and denominator of the second term on
the right side of Eq. (13) with respect to temperature, yields
a reasonable approximation to Eq. (15) for field effects on
second-order phase transitions if Tg(E ) is not significantly
different from Tg(E¼ 0) and ln(1þx) z xþ/ is expanded
in a Taylor series, followed by truncation after the linear
term. In other words, Eq. (15) can be simplified if
x¼ {Tg(E )�Tg(E¼ 0)}/Tg(E¼ 0);

ln
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ð16Þ

The static dielectric permeability is continuous [39] at Tg,
as evidenced by its non-monotonic temperature dependence
in the dipole-glass state of ferroelectric relaxors, such as
metal-oxide alloys that contain various combinations of lead,
magnesium, niobium, scandium, tantalum, titanium, zirco-
nium, and lanthanum [41]. Experiments reveal that the
nonlinear dielectric susceptibility of the electric dipole glass,
KCl:OH does not diverge at the freezing temperature, which
is defined as the temperature of maximum dielectric suscepti-
bility [42]. One concludes that the static dielectric permeabil-
ity and the static dielectric susceptibility are continuous at
second-order phase transitions [39], but their temperature
derivatives are discontinuous, unless electric fields have no
effect on the glass transition temperature. Hence, application
of l’Hopital’s rule to Eq. (13) for Tmelt(E ) yields Eq. (16)
for Tg(E ) via differentiation (i.e., numerator and denominator
separately) of the electric-field analog of the Clapeyron equa-
tion with respect to temperature at constant pressure, compo-
sition (i.e., for mixtures), and field strength. Several IIIeV
and IIeVI semiconductors exhibit positive temperature depen-
dence of their dielectric constants (i.e., 3/30) in the solid state
[47] at 300 K and 1 atm, {v ln(3/30)/vT}p z 1.5� 10�4 K�1,
when 3/30 z 10. This corresponds to a z3 K change in Tg

via Eq. (16) for very strong static fields (i.e., E z 10 MV/
cm) when the zero-field glass transition is z423 K (i.e.,
150 �C).

3.4. Volume continuity

The integral approach to second-order thermodynamic
phase transitions is analyzed by invoking volume continuity
(i) at temperature Tg(E ) in the presence of a uniform electric
field, and (ii) at Tg(E¼ 0) under zero-field conditions. One
should obtain the same expression for Tg(E ), discussed be-
low, by applying l’Hopital’s rule to Eq. (13) for Tmelt(E )
via differentiation (i.e., numerator and denominator sepa-
rately) of the electric-field analog of the Clapeyron equation
with respect to pressure at constant temperature, composition
(i.e., for mixtures), and field strength. The field-dependent
expression for partial molar volume (i.e., Eq. (12)) is simpli-
fied for pure materials by replacing partial molar dielectric
susceptibility with molar susceptibility, where the latter con-
tains molar volume. Upon equating molar volume v in the
glassy state (i.e., phase a) and the liquid state (i.e., phase
b), one obtains;

Now, one evaluates zero-field molar volume of each phase
(i.e., a and b) as a function of temperature from Tg(E¼ 0),
where va¼ vb in the absence of the field, to Tg(E ) where the
zero-field molar volume of each phase is not the same.
Zero-field thermal expansion coefficients, designated by
aE¼0, are employed to accomplish this task. Hence;
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In the previous expressions for the temperature dependence
of zero-field molar volume, if thermal expansion coefficients
in the absence of the electric field are assumed to be weak
functions of temperature, and Tg(E ) is not significantly dif-
ferent from Tg(E¼ 0), then the exponential is expanded in
a Taylor series and truncated after the linear term. Volume
continuity yields the following result;

The integral approach to phase equilibrium at second-order
transitions, based on volume continuity, predicts that uniform
dc electric fields affect the glass transition temperature accord-
ing to;
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where D implies a difference between electro-thermodynamic
properties in the liquid and glassy states at either the field-
dependent glass transition (i.e., numerator of Eq. (20)) or the
zero-field Tg (i.e., thermal expansion coefficients in the denom-
inator of Eq. (20)). There are no known exceptions to the fact
that the discontinuity in zero-field thermal expansion
coefficients is greater than zero in the denominator of the Eq. (20).
Hence, if electric-field ordering due to dipolar alignment
during the formation of electrets produces an increase in the
glass transition temperature, then the previous electric-field an-
alog of the Ehrenfest equation via volume continuity Eq. (20)
suggests that the pressure dependence of the molar dielectric
susceptibility must be greater in the liquid state relative to the
glass. This claim is supported by the fact that field-dependent
isothermal compressibilities, which are directly related to (vv/
vp)T,E in the numerator of the Eq. (20), experience a discontin-
uous increment as materials are heated through Tg. Several IIIe
V and IIeVI semiconductors exhibit negative pressure
dependence of their dielectric constants (i.e., 3/30) in the solid
state [47] at 300 K and pressures ranging from 1 atm to 4000 atm,
{v ln(3/30)/vp}T z�1.2� 10�2 GPa�1, when 3/30 z 10. This
corresponds to a z1 K change in Tg via Eq. (20) for very strong
static fields (i.e., E z 10 MV/cm), independent of the zero-field
glass transition temperature.

3.5. Electric-field analog of the PrigogineeDefay ratio
(i.e., equality)

Eqs. (16) and (20) describe electric field effects on the glass
transition temperature of pure materials via an integral repre-
sentation of phase equilibrium that invokes entropy and volume
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continuity, respectively. Similar methodology was invoked to
obtain the pressure dependence of Tg under zero-field condi-
tions, yielding the classic Ehrenfest equations [40] based on
the differential approach to phase equilibrium, once again
invoking entropy and volume continuity. Division of the
pressure dependence of Tg from volume continuity (i.e.,
vTg/vp¼Db/Da) by vTg/vp¼ TgvDa/DCp based on entropy
continuity yields the PrigogineeDefay [40] ratio l under zero-
field conditions;

l¼ DCpDb

Tgv
�
@Tg

�
fDag2

� 1 ð21Þ

where v is specific volume at the glass transition temperature and
D represents discontinuous increments in (i) specific heat Cp, (ii)
thermal expansion a, and (iii) isothermal compressibility b that
occur as materials are heated through the second-order phase tran-
sition. The equality applies to Eq. (21) if volume and entropy con-
tinuity provide adequate descriptions of the pressure dependence
of Tg. In many cases, experimental data reveal that the inequality
is obeyed, because volume continuity predicts that vTg/vp is
somewhere between 2-fold and 5-fold greater than vTg/vp from
entropy continuity [44,45]. It is generally accepted that predic-
tions of vTg/vp from entropy continuity are more accurate for
most, but not all, amorphous polymers [45], because the discon-
tinuity in isothermal compressibility Db is strongly pressure-de-
pendent and it has not been measured for as many materials,
relative to Da and DCp which are easier to obtain experimentally
[46]. Due to the lack of accurate Tg measurements for amorphous
polymers in the presence of dc electric fields, Eqs. (16) and (20)
are considered without bias, in an effort to develop the electric-
field analog of the PrigogineeDefay equality. Upon equating
Tg(E ) based on volume and entropy continuity, one obtains;
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Now, the appropriate ratio of thermophysical properties and
discontinuous observables at the second-order phase transition
temperature is constructed as follows;
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Discontinuous temperature and pressure derivatives of the
molar dielectric susceptibility are evaluated at Tg(E ) in the
presence of the electric field, whereas all of the other thermo-
physical properties in Eq. (23) are evaluated at Tg(E¼ 0) un-
der zero-field conditions. Application of the product rule to
the temperature and pressure derivatives of the molar dielec-
tric susceptibility in Eq. (23) yields the following form for
the electric-field analog of the PrigogineeDefay equality.
The pressure derivative of molar volume introduces the
field-dependent coefficient of isothermal compressibility
bEs0, with a negative sign, and the temperature derivative of
molar volume yields the field-dependent coefficient of thermal
expansion aEs0;

In the absence of any external fields, the additional work
term experienced by electric dipoles is not required in the first
law of thermodynamics, and it is not necessary to consider the
dielectric permeability of the medium. Hence, upon neglecting
the temperature and pressure derivatives of the dielectric
permeability 3, Eq. (24) reduces to the zero-field Prigoginee
Defay equality.

4. Conclusions

The integral approach to phase equilibrium for second-or-
der thermodynamic transitions is employed to analyze the ef-
fects of uniform dc electric fields on the glass transition
temperature of a pure material. A work term due to external
fields is added to the classical internal energy, which reveals
that most thermodynamic properties of interest scale as the
square of the magnitude of the field when systems do not ex-
hibit electric saturation. Volume and entropy continuity at sec-
ond-order phase transitions suggest that discontinuous changes
in (i) pressure dependence, and (ii) temperature dependence,
respectively, of the molar dielectric susceptibility, or partial
molar dielectric susceptibility for mixtures, govern the sign
of the shift in the glass transition temperature as a function
of electric field strength. Both Tg-field equations predict small
changes in the glass transition temperature that scale as the
square of the electric field strength. These two Ehrenfest-like
relations at second-order phase transitions are combined to
yield the electric-field analog of the PrigogineeDefay equal-
ity, which reduces to the correct zero-field ratio of discontinu-
ous thermodynamic properties when the field is removed.
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